Downloadingng_and_visualizing_images_in_google_cloud
Dawn Hill 结丹

这些代码都是在Google drive上跑的,在这备份,防意外

查看TensorFlow的版本和显卡信息

1
2
3
import tensorflow as tf
print(tf.__version__)
!/opt/bin/nvidia-smi

安装TensorFlow2.1

1
2
# Runs with stable version tensorflow 2.1.0.
!pip install tensorflow==2.1.0

开始操作

准备代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# For running inference on the TF-Hub module.
import tensorflow as tf
import tensorflow_hub as hub

# For downloading the image.
import matplotlib.pyplot as plt
import tempfile
from six.moves.urllib.request import urlopen
from six import BytesIO

# For drawing onto the image.
import numpy as np
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
from PIL import ImageOps

# For measuring the inference time.
import time

# Print Tensorflow version
print(tf.__version__)

# Check available GPU devices.
print("The following GPU devices are available: %s" % tf.test.gpu_device_name())

def display_image(image): #显示图片
fig = plt.figure(figsize=(20, 15))
plt.grid(False)
plt.imshow(image)


def download_and_resize_image(url, new_width=256, new_height=256, display=False):#下载并改变图片大小
_, filename = tempfile.mkstemp(suffix=".jpg")
response = urlopen(url)
image_data = response.read()
image_data = BytesIO(image_data)
pil_image = Image.open(image_data)
pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS)
pil_image_rgb = pil_image.convert("RGB")
pil_image_rgb.save(filename, format="JPEG", quality=90)
print("Image downloaded to %s." % filename)
if display:
display_image(pil_image)
return filename


def draw_bounding_box_on_image(image,ymin,xmin,ymax,xmax,color,font,thickness=4,display_str_list=()):#在图片上画包围盒
"""Adds a bounding box to an image."""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)

# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
# Each display_str has a top and bottom margin of 0.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)

if top > total_display_str_height:
text_bottom = top
else:
text_bottom = bottom + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
text_width, text_height = font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle([(left, text_bottom - text_height - 2 * margin),
(left + text_width, text_bottom)],
fill=color)
draw.text((left + margin, text_bottom - text_height - margin),
display_str,
fill="black",
font=font)
text_bottom -= text_height - 2 * margin


def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1):# 画包围盒
"""Overlay labeled boxes on an image with formatted scores and label names."""
colors = list(ImageColor.colormap.values())

try:
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf",25)
except IOError:
print("Font not found, using default font.")
font = ImageFont.load_default()

for i in range(min(boxes.shape[0], max_boxes)):
if scores[i] >= min_score:
ymin, xmin, ymax, xmax = tuple(boxes[i])
display_str = "{}: {}%".format(class_names[i].decode("ascii"),
int(100 * scores[i]))
color = colors[hash(class_names[i]) % len(colors)]
image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
draw_bounding_box_on_image(
image_pil,
ymin,
xmin,
ymax,
xmax,
color,
font,
display_str_list=[display_str])
np.copyto(image, np.array(image_pil))
return image

下载图片示例
1
2
image_url = "https://farm1.staticflickr.com/4032/4653948754_c0d768086b_o.jpg"  #@param
downloaded_image_path = download_and_resize_image(image_url, 1280, 856, True)

加载检测模型
1
2
3
4
5
module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1" #@param 
#["https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1"]
#["https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"]

detector = hub.load(module_handle).signatures['default']

从本地读取模型并检测
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def load_img(path):
img = tf.io.read_file(path)
img = tf.image.decode_jpeg(img, channels=3)
return img
def run_detector(detector, path):
img = load_img(path)

converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...]
start_time = time.time()
result = detector(converted_img)
end_time = time.time()

result = {key:value.numpy() for key,value in result.items()}

print("Found %d objects." % len(result["detection_scores"]))
print("Inference time: ", end_time-start_time)

image_with_boxes = draw_boxes(
img.numpy(), result["detection_boxes"],
result["detection_class_entities"], result["detection_scores"])

display_image(image_with_boxes)
run_detector(detector, downloaded_image_path)

批量下载并检测数据
1
2
3
4
5
6
7
8
9
10
image_urls = ["https://farm7.staticflickr.com/8092/8592917784_4759d3088b_o.jpg",
"https://farm6.staticflickr.com/2598/4138342721_06f6e177f3_o.jpg",
"https://c4.staticflickr.com/9/8322/8053836633_6dc507f090_o.jpg"]

for image_url in image_urls:
start_time = time.time()
image_path = download_and_resize_image(image_url, 640, 480)
run_detector(detector, image_path)
end_time = time.time()
print("Inference time:")

挂载云盘

1
2
from google.colab import drive
drive.mount('/content/drive')

检测云盘上的数据
1
2
3
4
5
6
!pwd
!ls /
print(downloaded_image_path)
!ls /content/drive/My\ Drive/TensorFlow2/yoloV3/data/
mypath = "/content/drive/My Drive/TensorFlow2/yoloV3/data/meme.jpg"
run_detector(detector, mypath)

 打赏作者
 评论
评论插件加载失败
正在加载评论插件
由 Hexo 驱动 & 主题 Keep
访客数 访问量